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Summary

In this article we consider the Maxwell Speed Distribution (MSD) for gasses at very high temperatures. So
high maybe, that it is not very relevant, but I found it interesting to do. In the MSD the velocities get higher
for higher temperatures. At a certain temperature the velocities are distributed around a certain value, with a
certain shape given by the MSD. The MSD goes to zero at zero speed and at infinite speed. According to the
theory of relativity, particles with a nonzero mass can never reach the speed of light. Therefore, in reality the
MSD should go to zero already if the speed reaches the speed of light. First a formula for the relativistic kinetic
energy will be given and shown to be useful. Then the MSD for that kinetic energy will be calculated and the
results will be plotted for different temperatures to see the effect of the theory of relativity on its shape. In the
end the average speed, the root mean square speed and the speed at which the distribution has its maximum
will be compared to the ’classical’ MSD.

1 Introduction

In gasses, particles move around with all kinds of
velocities. The absolute value of the velocity is called
speed. These speeds take on a whole range of values,
dependent on the temperature. Off course the ’root-
mean-square’ speed of the particles can be computed
by setting the kinetic energy equal to the thermal
energy:
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Other sorts of averages need to be calculated using
the distribution function.

1.1 The Maxwell Speed Distribution

A distribution function, most of times called D(v),
is a scalar function. Its actual value has no meaning.
What you need it for is to calculate a probability of
finding a particle in a certain interval of speeds and it
is done by integrating the distribution between those
speeds. If we call a probability of finding a particle
in the interval between v1 and v2 P (v1...v2) then you
calculate it as follows:

P (v1...v2) =

∫ v2

v1

D(v)dv (3)

In this way one can see the probability of finding a
particle in that particular interval as the area under
the function.

It is pretty obvious that the MSD is proportional
to the probability of a particle having a velocity −→v
and to the number of vectors −→v corresponding to
a speed v. The probability of a particle having a
velocity −→v is proportional to the Boltzmann factor
e−E(s)/kT , where for E(s) an appropriate kinetic en-
ergy has to be used, and the number of vectors −→v
corresponding to a speed v is proportional to the area
of a sphere in the velocity space: 4πv2, because this
space is three dimensional (three perpendicular di-
rections for the vector to lie in), and its radius is v,
the absolute value of the vector −→v . Therefore

D(v) = C · 4πv2 · e−E(s)/kT (4)

In the classical case, E(s) = 1
2mv2 and the MSD

becomes

D(v) = C · 4πv2 · e−mv2/2kT (5)

The factor C has to be determined from normaliza-
tion (because the particle must have some speed):

1 = C · 4π

∫

∞

0

v2 · e−mv2/2kT dv (6)

From this we find C = ( m
2πkT )

3

2 and so the MSD
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without relativistic corrections becomes given by

D(v) =
( m

2πkT

)
3

2 · 4πv2 · e−mv2/2kT (7)

A plot of the MSD for a hydrogen gas at
T = 10.000 K is shown in Fig 1 where you can
clearly see that D(v) → 0 for v → 0 and, less clearly,
D(v) → 0 for v → ∞. Of course, these properties
are clear from Eq. 7 too.

Figure 1: MSD without relativistic corrections for a hydrogen
gas at 10.000 K.

The dependance on temperature of the MSD is
shown in Figure 2. The highest peak corresponds to
the lowest temperature. The peak velocity is tem-
perature dependent as

vmax =

√

2kT

m
(8)

as can be easily seen by putting the derivative of
Eq. 7 equal to 0. The average speed is found by
v =

∑

vD(v)dv. This sum can be turned into an
integral and it becomes:

v =
( m

2πkT

)
3

2 4π

∫

∞

0

e−mv2/2kT v3dv =

√

8kT

πm
(9)

We now have become three kinds of a mean value
for the speed, which are all different. In increasing
order: the speed at which the MSD has its maximum
value, vmax, given by Eq 8, the average speed v given
by Eq 9 and the root-mean-square speed vrms, given
by Eq 2.

1.2 The Theory of Special Relativity

According to Maxwell particles in a gas have a whole
range of speeds, in theory even extending to very
high values. If you increase the temperature high
enough, according to the MSD a certain part of the

Figure 2: MSD’s for different temperatures in random units
(they are normalized).

particles will move at speed greater than the speed
of light:

N(v ≥ c) = N

∫

∞

c

D(v)dv ≥ 0 (10)

where N(v ≥ c) denotes the number of particles with
a speed greater than or equal to the speed of light,
and N is the total number of particles in our gas.
Because there is a lower limit in the integral now, it
cannot be calculated analytically anymore.

You can imagine that when the temperature in-
creases to very high values it is possible to reach
states where vmax becomes in the order of the speed
of light c = 299.792.458 m/s. The temperatures that
we are talking about then are calculated by rewrit-

ing Eq 8 like T =
v2

max
m

2k . If we are talking about
a hydrogen gas (hydrogen is the most abundant el-
ement in the universe, and I think that if this tem-
peratures are accomplished somewhere, it must be
an exotic place in the universe), and we say that
vmax must be approximately 1/3 of c (say, for sim-
plicity 108 m/s) then the temperature must be of

order T = (108)21.68·10−27

2·1.38·10−23 ≈ 6 · 1011 K. Adapting the
MSD to a relativistic description doesn’t seem to be
that important. The only place I heard about such a
temperature is in the iron core of a very massive and
highly evolved star, where the temperature exceeds
1010 K. Nevertheless it might be very interesting.

1.2.1 An Expression for the Kinetic Energy

In the theory of special relativity one often uses the
expression Ek =

√

p2c2 − m2c4 in which m is the
rest mass of a particle. This is indeed a good expres-
sion but it is a function of the particles momentum
p. This relation is therefore not to be used in the
MSD since p doesn’t vary linearly with v (the mass
of a particle increases with higher speed). Another
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relation is more useful here. The total energy of a
particle (including its rest mass energy) is given by

Etotal = γmc2 (11)

in which

γ =
1

√

1 − v2

c2

(12)

m is the rest mass of the particle en v and c are the
speed of the particle and the speed of light respec-
tively.

To derive an MSD for relativistic speeds, one
needs the kinetic energy, while Eq 11 gives the ki-
netic energy and the rest mass energy together (for
v = 0, Etotal = mc2), so in order to obtain a useful
expression for the kinetic energy we need to subtract
this rest mass energy:

Ekin = γmc2 − mc2 = mc2(γ − 1), (13)

which goes to zero for zero speed. This expression for
the relativistic kinetic energy will be used to derive
the MSD for ultra-high temperatures.

2 The Relativistic Form of the

Maxwell Speed Distribution

2.1 The Distribution Function

When we fill in Eq 13 as a function for the kinetic
energy in the general form of the distribution, Eq 4,
we become an expression for the MSD in which there
is taken account of relativistic effects:

D(v) = C · 4πv2 ·Exp
[m0c

2

kT

(

1−
1

√

1 − v2

c2

)]

(14)

The constant C again has to be determined from
normalization,

C = 1/

∫ c

0

4πv2 · Exp
[m0c

2

kT

(

1 −
1

√

1 − v2

c2

)]

dv

(15)
The upper integration limit was ∞, but for values
higher than c, D(v) must be zero (actually it is imag-
inary). This integral can unfortunately not be evalu-
ated analytically, so numerical methods will be used.

First we will check whether this distribution func-
tion is to be used. Does its value indeed go to zero
for v → c? Is its shape for low temperatures like the
shape of Fig 1? What happens at higher tempera-
tures? Is the peak ever moving toward higher speeds
for higher temperatures as would be expected? Do
the peaks smear out too like in the classical form of
the MSD?

2.2 Properties of the relativistic MSD

First we will check the limits of the distribution
mathematically:

lim
v→0

D(v) = 0 (16)

as is easily seen by just filling in this value for v in
the distribution. What about the upper limit? All
we meant by deriving this equation is to correct for
speeds around c, because higher speeds are not possi-
ble, according to Einstein. Therefore, it is necessary
for D(v) to go to 0 for v → c:

lim
v→c

D(v) ∝ e−∞ = 0 (17)

because the Lorentzfactor (γ = 1√
1−v2/c2

) goes to

infinity when the speed reaches the speed of light.
So both of the limits are OK.

Of course, for low temperatures, and hence low
speeds, the relativistic MSD should be equal to the
’classical’ MSD (at least in first order). To verify
this we will just show that the relativistic form of
the kinetic energy (Eq 13) for low speeds will become
the same as the classical kinetic energy( 1

2mv2). For
small v we can write

γ =
1

√

1 − v2

c2

= 1 +
1

2

v2

c2
(18)

so

mc2(γ − 1) = mc2(1 +
1

2

v2

c2
− 1) =

1

2
mv2 (19)

for small v. At low temperatures where, according
to both the normal and the relativistic MSD, the
speeds are low, the relativistic MSD is similar to
the one Maxwell derived in 1859. Because if we fill
in another expression for the kinetic energies, which
has the same value at low speeds, in the distribution
function which is the same, except for that kinetic
energy, we have the same distribution at low speeds.
This of course should also be clear from plots of the
MSD. To draw these we must first integrate the func-
tion in order to get a value for the normalization
constant C.

2.3 Normalization

Because the numbers that come across in the MSD
(especially in a relativistic variant, where the speed
of light is all around) are quite large, I used a system
of units in which the speed of light c, Boltzmann’s
constant k and the mass of the considered particle
m are all chosen to equal 1. That is in order to
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make the numerical integration become possible by
the program used and nothing is hereby lost in the
physics.

The numerical integration is carried out using
Mathematica. A dependance of C on the temper-
ature is therefore not too clear, because we only get
numerical values for different temperatures. Using
the normalization constants, plots of different tem-
peratures can be made (Fig 3). In this plot the
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Figure 3: MSD for relativistic expressions of the kinetic en-
ergy. The units are such that c = k = m = 1, but the distri-
butions are normalized.

temperatures are in proportion 1:2:10:20:200 with in-
creasing temperatures having peaks more and more
to the right. A few things can be clearly seen from
the plot.

3 Properties of the Relativistic

MSD and Comparison

In contrast with the classical MSD the peaks get
higher after a certain value for T . Can we under-
stand this? If we take a close look at the plot we see
that the left tail of the MSD is always pretty much
the same as in the classical case. It is only in the
regime of higher v where we notice a difference. For
ever higher temperatures the particles must all have
a very high speed, because of their thermal energy.
The particles with a speed higher than a certain value
v1 must also have a speed smaller than c. Therefore
the number of particles in the interval v1 < v < c
must be higher than expected for the classic case.
The speeds ’pile up’. The peak value gets ever closer
to the speed of light, but will never reach it, no mat-
ter how high the temperature.

3.1 Limits of the Distribution

Now we will take a closer look at both ends of the dis-
tribution and see what changes if relativistic effects

are taken into account.
For low temperatures the shape looks pretty

much the same as in Fig 1 as was expected from
the calculations. At low speeds the particles don’t
notice anything of their upper speed limit.

Let’s take a look at the right tail of the distribu-
tion. In the classical case there was an exponential
fall off, as could be seen from the equation too (Eq 7).
From the relativistic variant you should expect the
same behavior. To see this (and to verify that it still
is the case for even bigger temperatures) we plot the
very last part of Fig 3, for a temperature 20 times
higher than the highest temperature in Fig 3 (not
drawn in that plot, because of the big difference in
scale). The result can be seen in Fig 4.
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Figure 4: The right wing of the Maxwell Speed Distribution
at extremely high temperatures.

The exponential fall off is very clear from this
plot too. So Although it is very tightly packed, the
exponential fall off will make sure that the number of
particles with speeds too close to the speed of light
will still be low.

3.2 Mean values of the speeds

Just as in section 1.1 there are three mean values of
the speed. In the first place there is the root-mean-
square speed. We can find this speed by putting the
kinetic energy equal to the thermal energy, just like
in Eq 1:

mc2(γ(vrms) − 1) =
3

2
kT (20)

Rearranging terms gives us:

vrms = c

√

1 −
( 3kT

2mc2
+ 1

)

−2

(21)

We can compare both dependencies of the root-
mean-square speed on the temperature by plotting
both the relativistic and the classical rms speed
against temperature as is done in Fig 5. It can be eas-
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Figure 5: The classical (upper line) and relativistic (lower
line) root-mean-square speeds as a function of temperature
(in units where c = k = m = 1).

ily seen that for lower temperatures the rms speed is
again the same and for higher speeds the relativistic
correction gives values below c, while the usual cal-
culation gives values possibly higher than the speed
of light.

It will be obvious that similar statements hold
for the speed at which the distribution function has
its maximum (vmax) and for the average speed (v)
too. The former can be computed by the implicit
equation

∂

∂v
D(vmax) = 0 (22)

The latter again is given by the integral

v = 4πC ·
∫ c

0

v3Exp
[m0c

2

kT

(

1−
1

√

1 − v2

c2

)]

dv (23)

Because of the required numerical integrations, it is
not easily possible to become expressions for them as
a function of temperature. Therefore only qualitative
statements will be made.

In section 1.1 we saw that vmax was the smallest
of three, followed up by v and the biggest value was
for vrms. De average speed can be seen as the ’center
of mass’ of the distribution. From Fig 3 it can be seen
that vmax comes ever closer to the speed of light, and
the left tail of the function is becoming bigger. That
means that for very high temperatures vmax > v.
The order of the mean values thus changes too if
relativistic effects are taken into account.

4 Overview

In this paper the Maxwell Speed Distribution is
transformed in such a way that it obeys the spe-
cial theory of relativity. That is, no speeds bigger
than the speed of light are allowed for particles in a

gas. To be able to do so the expression for kinetic
energy as used in the original MSD is replaced by an
appropriate relativistic expression.

With that expression a relativistic form of the
MSD is derived. The distribution function could
not be integrated analytically anymore, so numer-
ical methods are used. After determination of the
integration constant for several temperatures, plots
are made of the MSD for those temperatures.

Comparison with the original distribution func-
tion learns us (both analytically and graphically)
that for low temperatures (and hence low speeds for
most particles) the relativistic form gives the same
shape for the distribution function. For higher tem-
peratures (even that high, that it may be questioned
whether it happens anywhere in the universe at all)
the MSD is really of a quite different shape if rela-
tivistic effects are taken into account. It looks like
you push the ’old’ distribution against a wall placed
at v = c.

Is this at all physically relevant? For most of the
purposes in everyday (astro-)physics it is not that
important. It is more important for particles with
smaller masses, because they have bigger speeds at
the same kinetic energy. So if, in the end, the neu-
trino turns out to have a tiny little mass (which is,
as far as I know, still possible), then we may find a
place to use all this. Besides the physical relevance
I found it interesting to see what happens at that
enormously high temperatures where, in the classi-
cal sense, it was possible for particles to have a speed
exceeding the speed of light.
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